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We have extended the procedure to find the exact solution of the Riemann problem in
relativistic hydrodynamics to a particular case of relativistic magnetohydrodynamics
in which the magnetic field of the initial states is tangential to the discontinuity and
orthogonal to the flow velocity. The wave pattern produced after the break up of
the initial discontinuity is analogous to the non-magnetic case and we show that the
problem can be understood as a purely relativistic hydrodynamical problem with a
modified equation of state. The new degree of freedom introduced by the non-zero
component of the magnetic field results in interesting effects consisting in the change
of the wave patterns for given initial thermodynamical states, in a similar way to
the effects arising from the introduction of tangential velocities. Secondly, when the
magnetic field dominates the thermodynamical pressure and energy, the wave speeds
approach the speed of light, leading to fast shocks and fast and arbitrarily thin
rarefaction waves. Our approach is the first non-trivial exact solution of a Riemann
problem in relativistic magnetohydrodynamics and it can also be of great interest to
test numerical codes against known analytical or exact solutions.

1. Introduction

The decay of a discontinuity separating two constant initial states (Riemann
problem) has played a very important role in the development of numerical codes
for classical (Newtonian) hydrodynamics after the pioneering work of Godunov
(1959). Nowadays, most modern high-resolution shock-capturing methods (LeVeque
1992) are based on the exact or approximate solution of Riemann problems between
adjacent numerical cells, and the development of efficient Riemann solvers has become
a research field in numerical analysis on its own (see, e.g. Toro 1997). The success
of high-resolution shock-capturing methods in many areas of computational fluid
dynamics has triggered their extension to classical magnetohydrodynamics (MHD)
(e.g. Brio & Wu 1988; for an up-to-date discussion of the issue, see Balsara 2004).

As in other fields in physics, during the last two decades astrophysics, relativity and
cosmology have become computational sciences. Modelling and understanding fluid
dynamics in astrophysical scenarios is now a key part in research projects involving su-
pernovae, relativistic jets, neutron star instabilities, or accretion onto compact objects,
who share a common distinctive feature: either special or general relativity effects are
relevant. With this motivation, Riemann solvers have been used in numerical relativ-
istic hydrodynamics since the beginning of the 1990s (Marti, Ibafiez & Miralles 1991).
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At present, the use of high-resolution shock-capturing methods based on Riemann
solvers is considered the best strategy to solve the equations of relativistic hydro-
dynamics which has caused the rapid development of Riemann solvers for both special
and general relativistic hydrodynamics (see, e.g. Font 2003; Marti & Miiller 2003).

The finding by Marti & Miiller (1994) of the analytical solution for initial states
where the flow is normal to the initial discontinuity boosted the efforts to develop exact
Riemann solvers for relativistic hydrodynamics. Pons, Marti & Miiller (2000) extended
the domain of solutions to problems with arbitrary initial velocities. Rezzolla &
Zanotti (2001), for purely normal flow, and Rezzolla, Zanotti & Pons (2003), for the
general case, proposed a new procedure to find the solution of the Riemann problem
that uses the relativistically invariant relative velocity between the unperturbed initial
states. However, to date, no analytical or exact solution of the equations of the
Riemann problem in relativistic magnetohydrodynamics has been derived.

The equations of both classical and relativistic magnetohydrodynamics form a
non-strictly hyperbolic system. A consequence of the non-strict hyperbolicity of
the MHD are the degeneracies in the wave speeds (that lead, e.g. to compound
waves, admisible solutions of the planar MHD that involve intermediate shocks),
which must be handled analytically with care and hinder the development of both
exact and approximate Riemann solvers using the characteristic information for
the MHD equations. In the relativistic case, the difficulties in the development of
such solvers are increased by the higher nonlinearity of the magnetohydrodynamics
system of equations. The characteristic structure of the equations of relativistic
magnetohydrodynamics (RMHD) is analysed in Lichnerowicz (1967) and Anile
(1989). Approximate Riemann solvers using the characteristic information have been
developed by Romero et al. (1996), for the same particular magnetohydrodynamic
configuration considered here, and by Balsara (2001), Komissarov (1999) and Koldoba,
Kuznetsov & Ustyugova (2002), for the general case. A number of analytical solutions
involving only shocks, rarefactions and Alfvén waves (Komissarov 1999, 2003) have
also been derived.

In this paper, we describe the solution of the Riemann problem for the particular
case in which the flow speed has two non-vanishing components and the magnetic
field is orthogonal to them. Besides this, we force the flow to have dependence on one
spatial coordinate taken along one of the two non-vanishing velocity components.
For this particular set-up, the Riemann structure degenerates to only three waves,
making the solution attainable. The solution reveals interesting and distinct properties
of RMHD and could serve as a guide to the way to the general RMHD Riemann
solution.

In this paper, we follow closely the structure and notation used in Pons et al.
(2000; hereinafter referred to as PMM). The paper is organized as follows. Section 2
collects the relevant equations. Sections 3 and 4 describe, respectively, the flow across
rarefactions and shocks setting the ingredients for the Riemann solution, which is
discussed in § 5.7 Conclusions are drawn in § 6.

2. Equations

Let J#, T* and F™™ (u,v =0, 1,2, 3) be the components of the density current,
the energy—momentum tensor and the Maxwell dual tensor of an ideal magneto-fluid,

1 The code computing the exact solution is available on request from the authors. Users of the
code can give credit by mentioning the source and citing this paper.
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respectively,
J* = pu”, (2.1)
T = phuu’ + "’ p — b*b", (2.2)
F™ =u"b” —u"b", (2.3)

where p is the proper rest-mass density, h=1+e+p /p+b?*/p is the specific enthalpy
including the contribution from the magnetic field (b*> stands for b"b,), ¢ is the
specific internal energy, p the thermal pressure, p = p + b?/2 the total pressure, and
n* = diag(—1, 1, 1, 1) the Minkowski metric in Cartesian coordinates. Throughout
the paper we use units in which the speed of light is ¢ = 1.

The four-vectors representing the fluid velocity and the magnetic field in the fluid
rest frame, " and b*, satisfy the conditions u*u, = —1 and u*b, = 0, and there is an
equation of state p = p(p, €) that closes the system. All the discussion will be valid
for a general equation of state, but results will be shown for an ideal gas, for which
p = (y — 1)pe, where y is the adiabatic exponent.

The equations of ideal RMHD correspond to the conservation of rest mass and
energy-momentum, and the Maxwell equations. In flat space—time and Cartesian
coordinates, these equations read:

Jt, =0, (2.4)
T/Lfﬂ =0, (2.5)
F*‘{”M =0. (2.6)

We consider a particular case in which the flow speed has two components and
the magnetic field is orthogonal to them. Besides this, we force the flow to have
dependence on one spatial coordinate (x) taken along one of the two non-vanishing
velocity components. Specifically, we set u* = W(1, v*, 0, v®), b* = (0,0, b, 0), where
W is the flow Lorentz factor. With these restrictions, the above system can be written
as a system of conservation laws

ou  oF
—+—=0 2.7
o T =0 (2.7
where
U=(D,5, 8, B (2.8)
is the state vector of conserved quantities and
F = (Dv', $%v" + p, $%v*, 8, Bv*)T (2.9)
is the corresponding vector of fluxes, with
D = pW, (2.10)
S = phW' (i =x,z), (2.11)
and
t=phw>—p (2.12)
being the rest-mass, momentum and total energy densities, and
B =bW (2.13)

the y-component of the magnetic field as measured in the laboratory frame. Hence,
according to these equations, the particular initial configuration chosen together with
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the imposed symmetry prevent the generation of new components of the velocity and
magnetic field.

It is worth noting that for the particular configuration chosen, the term (b*d") ,
appearing in the equation of conservation of the stress—energy tensor, vanishes and
the RMHD equations reduce to the purely hydrodynamical case with the only
contributions from the magnetic field appearing in the pressure and specific enthalpy,
and an additional continuity equation for the evolution of the transversal magnetic
field. This fact is considered in the Appendix where we explore the possibility of
including the magnetic effects of the present configuration in the definition of the
equation of state.

According to the previous discussion, the magnetized flow under consideration falls
in one of the two degeneracies of the RMHD system (Degeneracy I; Komissarov
1999), for which a description in terms of just three characteristic waves (namely the
entropy wave and the two fast magnetosonic waves) is adequate. Turning now towards
the solution of the Riemann problem in this particular case, the discontinuity in the
initial states breaks down into a couple of left and right propagating rarefaction waves
(self-similar continuous flows) and/or shocks and a central tangential discontinuity
across which the total pressure, p, is constant. Both thermal and total pressure increase
at fast magnetosonic shocks. Hence, we would use the comparison of the total pressure
at the two limiting states to select between shocks and rarefaction waves.

3. Flow across rarefactions

Rarefaction waves are self-similar solutions of the equations that depend on x and
t only through the combination & = x/¢. By imposing such a dependence in system
(2.7) we obtain the following set of equations

dv?
(" s> o1+ v W — ) e =0 G
) A dv* L. db dp
Woph(v* — &) @ +b(1—v S)d +(1 - )(TS 0, (3.2)
A dv?
szh(vx—%')d v'h $£— “5 dg 0, (33)
dp _ 2di
E = hc; &’ (34)
X y72 X db
b(1 +v*"W-(v* S) vi(v S §)£ =0, (3.9)

similar to the system obtalned in PMM. The quantlty ¢, 1s the sound speed, defined

by

1o

h dp |,

where s is the specific entropy and & = 1 4+ ¢ + p/p, the specific enthalpy.
Non-trivial similarity solutions exist only if the determinant of system (3.1)—(3.5)

vanishes. This leads to the condition

v (1 — 0?) + /(1 — v)[1 — v20? — (v9)*(1 — w?)]

1 —v2w?

(3.6)

c =

£ = : (3.7
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where ? = ¢2 +v3 —2v2 and v3 = b?/ph is the Alfvén velocity. The plus and minus
signs correspond to rarefaction waves propagating to the left #Z._ and right #Z_,,
respectively. Note that the values of & reduce to those obtained in PMM by replacing
w by ¢ (i.e. b =0).

From system (3.1)—(3.5), after some algebraic manipulations, we obtain:

A dv* db dp
2 X 1 — v E)— 1 —v'é)—= = .
W2ph(v' — &) g +b(1 —v'8) g +(1 —v'8) g =0, (338)
dp  ,dp
E = hcs E, (39)
hWv* = constant, (3.10)
,l; = constant. (3.11)

Now, using (3.9) and (3.11) to eliminate the differentials of » and p, and defining
% = b/p, the ODE (3.8) can be rewritten as
(14 %20 /he?) (1 — &v*
diz ( + A10/ C.s)( g'l) )7 (312)
dp phW? (§ —vY)
in complete analogy with (3.20) in Rezzolla et al. (2003) in the case b = 0. The
analogy can also be extended to the solution procedure. If we define .o/ = hWv? then,

from (3.10),
N 1 — (v* 2
(%) = /> <(”)> (3.13)
h? + o/ ?
which allows us to eliminate the dependence on v® in (3.7). Now, from the definition
of the Lorentz factor, we can derive

72 72
2 Ahi (3.14)
h*(1 — (v*)?)
and, after some algebra,
1 — &0 h? + 721 — ?
v _ 4 \/ ( ) (3.15)

§—v* ho
(where o is the positive root of w?). Finally, substituting these last two expressions in
(3.12), we obtain

dv* N (1 +932p/hc§)\/122 +/2(1 - 0?) dp

I—@)2 h? + /> po’

The left-hand side of this expression can be integrated analytically and the right-hand
side involves only thermodynamical variables and constants. Considering that in a
Riemann problem the state ahead of the rarefaction wave is known, the integration

of (3.16) allows us to connect the states ahead (a) and behind (b) the rarefaction
wave. The normal velocity behind the rarefaction wave can be obtained directly as

v} = tanh @, (3.17)

(3.16)
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where

x » (14 %8%p /hc? \/izz A (1 — ?
)t W Tehe VTN dr

-, Pa h? + of 2 w
The differential of p in the last integral is taken along the adiabats of the equation
of state. The isentropic character of rarefaction waves fixes the entropy to that of
state a, s,. Having this in mind, the ODE can be integrated, the solution being only

a function of p,. This can be stated in compact form as
v, = RL(ps). (3.19)

It is interesting to have an expression for the normal velocity inside the rarefaction
wave in terms of the total pressure. This expression can be built taking into account
that, from the definition of p,

%=§10g<

dp=dp+#pdp (3.20)
and that along an adiabat,
dp = hcldp, (3.21)
which combined in result
22
dp= (1+22) ap. (3.22)
hc?
Substitution into (3.18) gives
. Lo\ oo i+ 1 — o) d;
%=;1og(+v“)i/ \/ k (1-ehdp (3.23)
l—v; Ba h? 4 /2 pw

Note that the previous expression is identical to that derived by Rezzolla et al. (2003)
in the case of (non-magnetized) relativistic hydrodynamics after removing the hats
and substituting @ by the sound speed. The corresponding compact notation for the
function giving v} in terms of p, will be

vy = AL (). (3.24)

Function #£2.(p) is shown in figure 1, for different values of the invariant B,
the various branches of the curves corresponding to rarefaction waves propagating
towards or away from a. Rarefaction waves move towards (away from) a, if the
pressure inside the rarefaction is smaller (larger) than p,. The last assertion also
applies for the total pressure, p. In a Riemann problem the state a is ahead of
the wave and only those branches corresponding to waves propagating towards
a in figure 1 must be considered. Moreover, we can discriminate between waves
propagating towards the left and the right by taking into account that the initial
left (right) state can only be reached by a wave propagating towards the left (right).
The addition of a transverse magnetic field in the limiting state forces the value of
the normal velocity within the rarefaction wave to have larger absolute values. This
effect is a consequence of the fact that the absolute value of the slope of the function
A°.(p) at pa, |#%(p.), is an increasing function of Vi (or b,). Moreover, it can be
easily proved that

) A 1 , A
2= (pa; B — 0)| = —|R(pa; # =), (3.25)

sa

where ¢, is the sound speed at state a. Hence, the sound speed at state a limits in
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FIGURE 1. Loci of states which can be connected with a given state a by means of relativistic
rarefaction waves propagating to the left (%) and to the right (#_,) and moving towards or
away from a. Solutions for 4 = 0, 1, 3 and 10, correspond to solid, dashed, dashed-dotted and
dotted lines, respectively. The state a is characterized by p, = 0.6, p, = 1.0, and v} = —0.3.
An ideal gas EOS with y = 5/3 was assumed.

practice the range of values of the normal velocity within the rarefaction wave (see
figure 1 where the curves corresponding to % = 3 and 10 almost coincide). Another
consequence of the previous result is that in the extreme case for which ¢, tends to
the light speed, the presence of a transverse magnetic field in the limiting state would
have no practical effect on the rarefaction wave. The effect of the magnetic field must
be combined with that coming from the presence of tangential velocities in state a
which operates in the opposite direction (see PMM).

4. Jumps across shocks

If ¥ is a hyper-surface in Minkowski space—time across which p, u*, T*" and
F**¥ are discontinuous, the Rankine—Hugoniot conditions are given by (Lichnerowicz
1967; Anile 1989)

[ou"]ln, =0, (4.1)
[T""]n, =0, (4.2)
[F"]n, =0, (4.3)
where n,, is the unit normal to ¥, and where we have used the notation
[G] = G. = Gy, (4.4)

G, and G, being the boundary values of G on the two sides of X.
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Considering X as the hyper-surface in four-dimensional space describing the
evolution of a shock wave normal to the x-axis, the unitarity of n, allows us to
write it as

n' = W,(Vi, 1,0, 0), (4.5)

where V; is interpreted as the coordinate velocity of the surface that defines the
position of the shock wave and W; is the Lorentz factor of the shock,

W= (4.6)

) /71 — sz .
Equations (4.1) and (4.3) allow us to introduce two invariants across the shock

j=W,D,(Vy —v) = W, Dy (V, — vj), (4.7)

f=W,B,(V, —v}) = W, B, (V, — v}), (4.8)
where B = bW. Quantity j represents the mass flux across the shock and according to
our definition, j is positive for shocks propagating to the right (the same convention
as that used in Marti & Miiller 1994; PMM). Dividing (4.7) by (4.8), we find that
the quantity B/D (or, equivalently, b/p) is constant across shocks, as it was through
rarefaction waves.

Next, the Rankine-Hugoniot conditions (4.1), (4.2) can be written in terms of the
conserved quantities D, S/ and %, and j as follows

qo_J (1

w1 == | 5] “9)

R I

[Pl = W, , (4.10)
% =0, (4.11)

s [T

[vp] = W [D} (4.12)

Now from (4.11) we have that the quantity hWv? is constant across the shock, as
it is through rarefactions.

We note that in deriving equations (4.9)—(4.12) we have made use of the fact
that the mass flux is non-zero across a shock. The conditions across a tangential
discontinuity imply continuous total pressure and normal velocity (by setting j = 0
in equations (4.9), (4.10) and (4.12)), and an arbitrary jump in the tangential velocity
and transverse magnetic field.

Our aim now is to write v, the normal flow speed in the post-shock state, as a
function of the post-shock pressure p,. As a first step, we write v; as a function of p,,
j and V; (and the preshock state, a). Given the complete analogy between the jump
conditions (4.7), (4.9)-(4.12), and the corresponding expressions in PMM, we write

. Wi(po — Pa)\ [+ . (W 1 !
ot = (oot + =P (= (T ) @y

The dependence on the magnetic field in the pre- and post-shock states is hidden in
the definitions of p and A.
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FIGURE 2. Graphical representation of the function Z“(iz; Dp) (see text for definition) whose
zeros for varying post-shock pressures, pj,, define the Lichnerowicz adiabat. The state a is
characterized by p, = 0.25, p, = 1.0 and v; = 0.5. Solutions for transversal magnetic fields in
state a, 4, = 0,0.5, 1.0 and 2.0, correspond to solid, dashed, dashed-dotted and dotted lines,
respectively. p, was chosen to be 1.0. An ideal gas EOS with y = 5/3 was assumed.

The shock speed V; can be eliminated using the definition of mass flux to obtain

- P2WZus £ ]Iy 72 + P2 W2 (1 —v?)

4.14
' paWi +Jj? ’ 19

where V,© (V,7) corresponds to shocks propagating to the right (left).
Proceeding in the same way as in PMM (i.e. [T*"]n,{(hu,), + (hu,),} = 0) to derive
the Taub adiabat, we can now obtain

2 il il(l A

= (242 ), (@.15)
Pb Pa

i.e. the Lichnerowicz adiabat (Anile 1989) particularized to our special set-up. Figure 2

represents the function

A . A A il ila A A
L py) =0 —hi — | ———+ = | (P — Pa) (4.16)
p(h, py) ~ Pa
for an ideal gas equation of state, although the general shape of the curve (positive
asymptotic branches; negative value for 2=1) is independent of the equation of
state. The (unique) root at the right of 2 =1 defines the thermodynamical post-shock
state.
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FiGgure 3. Loci of states which can be connected with a given state a by means of relativistic
shock waves propagating to the left () and to the right (¥_) and moving towards or
away from a. Solutions for 4 = 0, 1, 3 and 10, correspond to solid, dashed, dashed-dotted and
dotted lines, respectively. The state a is characterized by p, = 0.25, p, = 1.0, and v} = 0.5.
An ideal gas EOS with y = 5/3 was assumed.

Equation (4.15) together with the definitions of p and &, the equation of state and
the constancy of b/p through the shock, allows us to write p, as a function of p,
and the preshock state a. Next, multiplying (4.2) by n, and using the definition of
relativistic mass flux, we obtain

ji= ﬂ. (4.17)
[h/p]

Using the positive (negative) root of j? for shock waves propagating towards the
right (left), equation (4.17) allows us to obtain the desired relation between the post-
shock normal velocity v; and the post-shock pressure p,. In a compact form, the
relation reads

vi = Spy). (4.18)
Alternatively, the relation can be written as a function of p,
vi = Sy (4.19)

Let us note that the expressions used to build up the function 57‘;, namely
(4.13), (4.14), (4.15) and (4.17), are formally identical to those corresponding to the
pure (ie. non-magnetized) relativistic hydrodynamical case. The difference appears
in the definition of the function p=p(h, p), which leads to different roots of the
function #“(h; py), (4.16). Function #“.(p) is shown in figure 3, for different values
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of the invariant 4, the various branches of the curves corresponding to shock waves
propagating towards or away from a. In order to select the relevant branch of the
function 2. (p), the same argumentation as in the case of rarefaction waves can
be used (see §3). As in the case of rarefaction waves, the addition of a transverse
magnetic field in the limiting state forces the value of the normal velocity in the pre-/
post-shock state to have larger absolute values. Again, this effect must be combined
with that coming from the presence of tangential velocities in state a (see PMM).
Once v; is known, v; can be obtained through

2
(v)* = o7 (1 — (1) > (4.20)

h2 + .o

where we have defined .o/ = fz,, W,v:. Analogously, b, = @pb with 4 = ba/pa-

5. The solution of the Riemann problem

As discussed in §2, for the particular case under consideration (magnetic field
orthogonal to both the fluid velocity and the wave propagation direction), the time
evolution of a Riemann problem with initial states L (left) and R (right) can be
represented as:

LR > LW_L.¢R.W_ R, (5.1)

where #" and % denote a (fast magnetosonic-) shock or rarefaction, and a contact
discontinuity, respectively. The arrows (« / —) indicate the direction (left/right)
from which fluid elements enter the corresponding wave.

The solution of the Riemann problem consists in finding the intermediate states, L.
and R., as well as the positions of the waves separating the four states (which only
depend on L, L., R. and R). The functions # _, and # ._ allow us to determine the
functions v}, (p) and v}, (p), respectively. The pressure p. and the flow velocity v} in
the intermediate states are then given by the condition

Ve Ps) = V1. (Ps) = V1. (5.2)

The functions v§,(p) are defined by

A5(p) if p < ps,

A oA N ~ 5.3
I5(p) if p > ps. (>:3)

o0 = {
where 9?5( D) (93(13)) denotes the family of all states which can be connected through
a rarefaction (shock) with a given state § (L, R) ahead of the wave. Once p. and v}
have been obtained, the remaining quantities can be computed.

Figure 4 shows the solution of a particular Riemann problem for different values
of # =0,1.0,2.0,4.0 in the initial states. The crossing point of any two lines gives
the pressure and the normal velocity in the intermediate states.

It must be noted that the resolution of the Riemann problem under consideration
can be formally done in the same way as the pure (relativistic) hydrodynamical
problem with some modifications (see the Appendix). First of all, p and & have to
be replaced by p and h. Secondly, the sound speed in the integrand of (3.18) has to
be replaced by w. Finally, the equation of state that provides the rest-mass density as
a function of the pressure and the enthalpy, p(%, p), has to be modified to include
the contributions from the magnetic field. Given the parallelism between the present
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FIGURE 4. Graphical solution in the (p, v*)-plane of the relativistic Riemann problem with
initial data p; = 1.0, pp = 1.0, v; = 0; pr = 0.1, pg = 0.125 and vy = 0 for different values of
#=0,1.0,2.0 and 4.0, in the left and right states represented by solid, dashed, dashed-dotted
and dotted lines, respectively. Diamonds indicate the initial states. An ideal gas EOS with
y = 1.4 was assumed. The crossing point of any two lines gives the pressure and the
normal velocity in the intermediate states. Iy gives the solution for vanishing magnetic
field.

particular (relativistic) magnetohydrodynamical case and the purely hydrodynamical
one, the effects concerning the smooth transition from one wave pattern to another
when the tangential velocities in the initial states are changed (Rezzolla & Zanotti
2002; Rezzolla et al. 2003) will extend to the present case for fixed initial values of the
magnetic field. Hence, we concentrate on the effects on the solution induced by varying
the initial magnetic fields. Figure 5 shows the solution of a Riemann problem with
(a) vanishing magnetic field, and (b) bgp = 0.8. Whereas in the purely hydrodynamical
case the Riemann solution gives rise to a left-propagating rarefaction wave and right-
propagating contact and shock waves, the case with non-vanishing magnetic field
leads to a couple of shock waves and a left-propagating contact discontinuity. The
reason for this qualitative change (rarefaction/shock to shock/shock) can be found
in the increase of the total pressure in the initial right state of the magnetized case.
This increases the total pressure in the intermediate states at the two sides of the
contact discontinuity. When this pressure becomes larger than that at the initial left
state then a left-propagating shock instead of a rarefaction is produced.

Also noticeable from figure 5 is the increase of velocity of the shock propagating
towards the right in the magnetized case. The increase of the velocity of propagation
of fast waves for increasing magnetic fields (approaching the light speed in the fluid
rest frame for strong enough fields, much larger than equipartition) is well-known in
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FIGURE 5. Solution of the Riemann problem with initial data p;, = 1.0, p, = 1.0, v = 0.0;
pr = 0.1, pg = 0.125 and vy = —0.5, at time ¢ = 0.4. An ideal gas EOS with y = 5/3 was
assumed. (a) Purely hydrodynamical problem. (b) With br = 0.8. Note that p is constant
through the contact discontinuity whereas the thermal pressure, p, is not.

RMHD (e.g. Anile 1989). In the particular magnetic problem under consideration, it
leads to the increase of velocity of propagation of rarefaction heads and tails, and of
shocks, and can be understood as follows. Equation (3.7) gives the propagation speed
of the head/tail of a right-/left-propagating rarefaction wave in a given state. Taking
v*, v =0 in (3.7), we obtain |§*| = w and @ — 1 for large enough b. Remember that
for purely hydrodynamical (relativistic) flows, |€*| has the sound speed as a limiting
value. A similar result holds for shocks. For preshock states at rest, |[VE| — 1 as the
magnetic field in the preshock state is increased. This can be seen by remembering
that the shocks that appear in our configurations are super-magnetosonic, and that
the fast magnetosonic speed in the preshock state (w,) tends to light speed when
b, — 0.

Finally, let us note that the drift towards solutions involving only discontinuous
waves (shock waves and rarefactions of negligible width) for increasing magnetic
fields as concluded in the previous paragraph, is consistent with the fact that in the
limit of strong magnetization, the equations of RMHD reduce to the equations of
force-free degenerate electrodynamics, whose Riemann problem only involves (linearly
degenerate) discontinuous waves (Komissarov 2002).

6. Summary and conclusions

We have obtained an exact solution of the Riemann problem for multidimensional
relativistic magnetohydrodynamics in the particular case in which the magnetic field
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is normal to the fluid velocity. In this particular problem, the complex 7-wave pattern
of RMHD is reduced to two fast magnetosonic waves and a contact discontinuity,
which allows us to use the same procedure as in the non-magnetic case. Alternatively,
we have shown that the problem can be understood as a purely RHD situation with
a modified equation of state (see the Appendix for details).

Two interesting features arise from our results. First, for fixed initial thermo-
dynamical states, it is possible to change continuously from one wave pattern
to another (shock/shock, shock/rarefaction, rarefaction/rarefaction) analogously
to what happens when tangential velocities are introduced (Rezzolla & Zanotti
2002). Secondly, we recover the result for RMHD flows with general magnetic field
configurations establishing the tendency of the wave speeds to the light speed when the
magnetic field dominates the thermodynamical pressure and energy. For our particular
configuration of the magnetic field, this results in fast-moving shock waves and
rarefaction waves in which the distance between the head and the tail is progressively
reduced as the magnetic field increases. The drift towards solutions involving only
discontinuous waves (shock waves and rarefactions of negligible width) for increasing
magnetic fields is consistent with the fact that in the limit of strong magnetization, the
equations of RMHD reduce to the equations of force-free degenerate electrodynamics,
whose Riemann problem only involves discontinuous waves (Komissarov 2002).

In addition to the theoretical interest of our results, an exact solution of the RMHD
Riemann problem is relevant for the development of numerical codes. Up to now, in
order to test the various algorithms and approximate Riemann solvers developed for
numerical applications, one could only increase the spatial resolution and hope that
the numerical solution converged to the physical one. Having an exact solution to
compare with, even if it is just a particular case, allows for a more rigorous testing
and error estimation. Last but not least, it is more convenient to start understanding
and solving a simpler case before attempting the solution of the full problem, which
is the next natural extension of this work.

It is a pleasure to thank L. Anton and L. Rezzolla for useful discussions and
comments. Financial support for this research has been provided by Spanish MEC
grant AYA2004-08067-C03. J. A. P. is supported by a Ramén y Cajal contract.

Appendix. A hydrodynamical approach

Equations (2.7) are identical to those for the purely hydrodynamical case by
replacing

p— p=p+1ip, (A1)
o b?

h—h=h+—, (A2)
P

indicating that a description of the present particular RMHD problem based on a
purely hydrodynamical approach with a different equation of state may be possible. In
this Appendix, we explore such a possibility, first suggested by Romero et al. (1996).
The key point is to eliminate the magnetic field from the equations by building up a
thermodynamically consistent equation of state including the effects of the magnetic
field.
It follows from (2.7) that
D(b/p)
Dz

where D/Dr stands for the standard convective derivative, implying that the evolution

=0, (A3)
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of the fluid elements is along states keeping b/p = constant. Then for a particular
fluid element, p and & can be written as

p=p+1%p (Ad)
h=14+ p 142 AS
- €+,0+2 p9 ( )

where 4 is a constant. .
Consistency of the two previous expressions with the definition of 4 is fulfilled by
defining a new specific internal energy, &,

E=¢+ 1% (A 6)

The evolution of the fluid elements in a perfect fluid is adiabatic. Hence now we
look for the adiabats of the new equation of state, p = p(p, £). The fact that the
evolution of the fluid elements keeps % = constant draw us to consider that 4 is
constant along the adiabats of the new equation of state, § = constant. We shall
use this to look for the desired relation between the entropies of the two equations
of state, s and 5. To do this, we differentiate (A 6) along transformations keeping
§ = constant. We obtain

dé = de + 142 dp. (A7)
On the other hand, according to the first law of thermodynamics, for an adiabatic
transformation,

de = 2 dp. (A8)

d§=p£d,o+%9§2dp. (A9)
Finally, comparison with (A 7) leads to
de = % dp. (A 10)

which is formally identical to the variation of internal energy in an adiabatic
transformation s = constant. Taking into account that the differentials were taken
along the adiabats of the new equation of state, the conclusion is that the entropy in
the new equation of state must be a function of the entropy in the original equation
of state only.

Now the sound speed of the new equation of state,

1 A
&=L (A11)
h 9p |

can be derived. The substitution of p following (A4) and the equivalence of the
adiabats of the two equations of state leads to

2 = %cg+ P (A12)

where i and ¢, stand for the enthalpy and the sound speed of the original equation
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of state, respectively. Finally, a small amount of algebra allows us to write,

& =1/ (1—v3)c2 43, (A 13)

where v, is the Alfvén speed for our particular case in which only one component

of the magnetic field is non-zero, v, = b/\/,ofz(= ,@\/p/(h +@2p)). Note that ¢

coincides with the quantity w defined in §2.

Note that although the original equation of state could have a sound speed
significantly smaller than light speed (e.g. <1/ ﬁ, for an ultra-relativistic non-
degenerate ideal gas), the sound speed of the new equation of state (which represents
the true propagation speed of perturbations in our magnetized fluid) approaches the
light speed for large enough values of % (or b). Finally, notice that the convexity of the
EOS is ensured, since 4 is a positive defined quantity and therefore 3%p/dp?|, > 0.
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